

Home Search Collections Journals About Contact us My IOPscience

Simulation of the energy level scheme of Nd^{3+} and Eu^{3+} ions in rare-earth orthovanadates and phosphates

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1991 J. Phys.: Condens. Matter 3 6829 (http://iopscience.iop.org/0953-8984/3/35/012) View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.147 The article was downloaded on 11/05/2010 at 12:31

Please note that terms and conditions apply.

Simulation of the energy level scheme of Nd³⁺ and Eu³⁺ ions in rare-earth orthovanadates and phosphates

Elisabeth Antic-Fidancev[†], Jorma Hölsä[‡], Michelle Lemaitre-Blaise[†] and Pierre Porcher[†]

† Laboratoire des Elements de Transition dans les Solides, UPR, 210 CNRS,

1, place A. Briand, F-92195 Meudon, France

‡ Department of Chemical Engineering, Helsinki University of Technology, SF-02150 Espoo, Finland

Received 12 April 1991

Abstract. The absorption spectra of the Nd^{3+} ion in the tetragonal xenotime-type $NdVO_4$ and in the monoclinic monazite-type $LaVO_4$, $LaPO_4$ and $NdPO_4$ as well as the luminescence of the Eu^{3+} ion in $LaVO_4$ and $LaPO_4$ were measured and the spectra were analysed according to the appropriate symmetry of the RE site. In addition to pure zero-phonon electronic lines the absorption spectra of the Nd^{3+} ion showed extensive vibronic side bands which were identified with the aid of the measured Raman scattering spectra of $LaVO_4$: Nd^{3+} and $NdVO_4$. Based on the energy level schemes derived from the absorption and luminescence spectra the parametrization of the free-ion and crystal-field effects were carried out with good results as indicated by the low RMS deviation values. The parameter sets for Nd^{3+} and Eu^{3+} ions in the same matrices are consistent with each other but no correlation was found between sets for matrices of different structures.

1. Introduction

The trivalent RE³⁺ ions offer a very convenient and reliable tool for chemists and physicists to study the different electronic and magnetic interactions and their magnitude in solid state. This, of course, is due to the position of 4f^N electrons well shielded from the effect of the neighbouring ions. The shielding results in discrete and well defined energy level schemes as well as in usually rather weak coupling between the electronic and vibrational wave functions. One of the most popular RE³⁺ ions used as a spectroscopist's tool is Nd³⁺ with the 4f³-electron configuration which, at the same time, offers both the maximum amount of interactions to be studied and still a rather simple and conveniently calculable set of energy levels with only 182 Kramers' levels. Accordingly, the investigations based on the energy level scheme of the Nd³⁺ ion in different matrices can be found relatively frequently in the literature. At least the following matrices have been studied in considerable detail: LaF₃ [1, 2], NdF₃ [3], LaCl₃ [4, 5], NdCl₃ [6], LaBr₃ [7], Cs₂NaRECl₆ [8-10], LiYF₄ [11, 12], KY₃F₁₀ [13], CsCdBr₃ [14], Nd₂O₃ [15], Y₂O₃ [16], NdOCl [17], NdAlO₃ [18], YAlO₃ [19, 20], Nd₂O₂S [21], Nd₂S₃ [22], RE₂BaZnO₅ [23], different garnets [24-26], REPO₄ [27, 28] and REVO₄ [29, 30], Nd(EtSO₄)₃·9H₂O [31, 32], Na₃[Nd(oxydiacetate)₃]·2NaClO₄·6H₂O [33], CaWO₄ [34], PbWO₄ [35] and PbMoO₄ [36].

6830 E Antic-Fidancev et al

The optical properties of several RE^{3+} ions in $REVO_4$ and $REPO_4$ matrices have also been studied, i.e. Eu^{3+} in YVO_4 [37-41] and in $LuVO_4$ [41], Ho^{3+} in YPO_4 [27], Er^{3+} in YVO_4 [29, 42-43] and in YPO_4 [29, 42] and finally Tm^{3+} in YVO_4 [44, 45] and in YPO_4 [27]. However, these investigations have been concentrated on the xenotime-type structure for the obvious reason that this structure has much higher point symmetry of the RE site, D_{2d} , than the monazite structure, C_1 .

Since the lower-symmetry monazite structure has so far been omitted, our aim was to carry out the study of the energy level schemes in the Nd^{3+} ion in the $NdVO_4$ -LaVO_4 system and to compare the results with that obtained for $NdPO_4$. The 7F_J level scheme of the Eu^{3+} ion in the LaVO₄ and LaPO₄ matrices was also investigated for comparison.

2. Experimental details

2.1. Sample preparation

The REVO_4 and REPO_4 powder samples were prepared from a solid state reaction between corresponding RE sesquioxides and ammonium vanadate or phosphate. The said mixtures were first heated at 500 °C for 3 h, then at 700 °C for 2 h and finally at 1050 °C for 15 h. The routine x-ray powder diffraction analysis of the products revealed only the presence of orthovanadate or orthophosphate phases. For luminescence measurements the LaVO₄:Eu³⁺ and LaPO₄:Eu³⁺ powder samples were doped with a small amount of the trivalent europium ion (about 1 and 5 mol% of the total RE amount) replacing the host cation. The random and uniform substitution was ensured because of the small solubility differences between RE³⁺ ions. The Nd³⁺ content in LaVO₄ was much higher, close to 15 mol%, as required by the absorption measurements.

2.2. Optical measurements: absorption and luminescence

The absorption spectra of pure NdVO₄, pure NdPO₄ and doped LaVO₄:Nd³⁺ were obtained with a 3.4 m Jarrell-Ash grating spectrograph using photographic detection. All absorption measurements were carried out at 300, 77 and 4.2 K between 325 and 950 nm (10500 and 30000 cm⁻¹). Higher energies could not be reached owing to the matrix (MO_4^{3-}) absorption.

The luminescence spectra of LaVO₄: Eu^{3+} and LaPO₄: Eu^{3+} powder samples were detected under UV excitation at 300 and 77 K. The radiation from a 200 W mercury lamp was centred with wide-band filters below 300 nm to correspond to the strongly absorbing MO_4^{3-} band of the host matrix. The energy transfer from the MO_4^{3-} group to Eu^{3+} ion resulted in emission from the latter species which was detected with a 1 m Jarrell-Ash monochromator and a Hamamatsu R374 photomultiplier. The luminescence was recorded in the wavelength range between 575 and 750 nm.

2.3. Optical measurements: Raman scattering

The room temperature Raman scattering spectra of REMO_4 powder samples were obtained with Spectra Physics 164 argon ion laser excitation. The scattered radiation was dispersed with a Jobin-Yvon T800 triple monochromator and detected with a Hamamatsu R464 photomultiplier. The resolution of the equipment after the photon counting and electronic treatment was better than 3 cm^{-1} . The infrared absorption spectra for REVO₄ and REPO₄ were taken from [46, 47].

2.4. Crystal structure of REVO4 and REPO4

The crystal structures of REVO₄ (RE = Ce-Lu and Y) corresponding to the well known RE mineral xenotime are isomorphous belonging to the tetragonal crystal system with I4₁/amd (D¹⁹_{4h}) (No 141; Z = 4) as the space group [48]. The RE orthophosphates yield a similar structure except that the xenotime structure is stable from Gd to Lu (including Y) in the RE series [49]. The RE cation is coordinated to eight oxygen atoms in an arrangement of two interpenetrating tetrahedra yielding D_{2d} as the point symmetry of the single RE site. LaVO₄ and lighter members of the orthophosphate series possess the monoclinic monazite-type structure with P2₁/n (C⁵_{2h}) (No 14; Z = 4) as the space group [49]. In this structure the RE site is of much lower symmetry, C₁, than in the xenotime version. The RE coordination to nine oxygen atoms is very distorted but can be characterized best as a tricapped trigonal prism.

2.5. Theoretical treatment of experimental data

The major interactions resulting in the free-ion electron structure of the RE^{3+} ions with the $4f^N$ configuration include the electrostatic repulsion between the 4f electrons and the coupling of their spin and orbital angular momenta. Several minor contributions within the free-ion scheme can be taken into account in addition to the crystal-field effect. A rather recent review [1] can be used to furnish further details about the subject. The Hamiltonian used in this study was as follows:

$$H = H_0 - \sum_{k=0,1,2,3} E^k(nf, nf)e_k + \zeta_f A_{SO} + \alpha L(L+1) + \beta G(G_2) + \gamma G(R_7) + \sum_{k=2,3,4,6,7,8} T^k t_k + H_{cf}$$
(1)

where H_0 is the spherically symmetric one-electron part of the free-ion Hamiltonian, E^k and ζ_f are the electrostatic and spin-orbit integrals; e_k and A_{SO} represent the angular parts of the interactions mentioned above. For configurations of two or more equivalent electrons the two-body interactions can be taken into consideration. The appropriate two-body correction terms include α , β and γ ; L is the total orbital angular momentum; $G(G_2)$ and $G(R_7)$ are the Casimir operators for the groups G_2 and R_7 , respectively. For the 4f^N-electron configurations with N > 2, one can apply the three-body configuration interaction terms which are usually parametrized with the Judd parameters T^k (k =2, 3, 4, 6, 7 and 8). The t_k are operators transforming according to the irreducible groups G_2 and R_1 .

The standard one-electron crystal-field Hamiltonian H_{cf} comprises a sum of the products between the real and imaginary even-rank crystal-field parameters B_q^k and S_q^k and the spherical harmonics C_q^k as follows:

$$H_{\rm cf} = \sum_{kq} \left[B_q^k (C_q^k + C_{-q}^k) + {\rm i} S_q^k (C_q^k - C_{-q}^k) \right]. \tag{2}$$

The crystal-field parameters are appropriate to the site symmetry of the RE³⁺ ion in each matrix. Accordingly, for the xenotime structure with D_{2d} as the point symmetry of the RE³⁺ site there exist only five non-zero B_q^k parameters; B_0^2 , B_0^4 , B_4^4 , B_0^6 and B_4^6 . On the contrary, there are 27 different real and imaginary crystal-field parameters for the C₁ site symmetry prevailing in the monazite-type REMO₄. Such a number of parameters is not realistic for practical purposes and thus the simulation of the Eu³⁺ energy level scheme was carried out according to the C_{2v} symmetry with nine real B_q^k (k = 0, 2, 4 and $6; q \le k$) crystal-field parameters. As a whole the 4f³-electron configuration of the Nd³⁺ ion consists of 182 energy levels and thus the corresponding Hamiltonian involves a symmetric square matrix of size 182 × 182 which can be treated with relative ease on a memory-extended PC without truncation of the basis set of levels.

The 4f⁶ configuration of the Eu³⁺ ion has a total of 3003 | α SLJM) Stark sublevels. Since the treatment of the 4f⁶ configuration as a whole is impractical, some kind of truncation of the wavefunctions is usually introduced. The most simple case is to take into account only the 49 components of the ⁷F₀₋₆ ground multiplet. Such a rather drastic truncation naturally neglects many minor perturbations on the ⁷F_J wavefunctions. However, in most cases studied, this restricted set of ⁷F_J wavefunctions has been found sufficient to describe in an adequate way the effect of the neighbouring atoms on the electronic structure of the Eu³⁺ ion. The success encountered originates from two facts: first, the ⁷F_J ground multiplet is energetically well separated (nearly 12 000 cm⁻¹) from the next highest excited multiplet (⁵D₀₋₄) and, secondly, the crystal-field operator mixes only wavefunctions with the same multiplicity (the ⁷F septet is the only one of that multiplicity within the 4f⁶ configuration).

The actual fitting procedure between experimental and calculated energy level values was conducted with standard least-squares calculations using the σ -value (as defined in equation (3)) as a figure of merit describing the quality of the fit:

$$\sigma = \left(\sum \frac{(E_{\exp} - E_{calc})^2}{N_{lev} - N_{par}}\right)^{1/2}.$$
(3)

3. Results and discussion

3.1. Raman spectra of LaVO4 and NdVO4

The Raman spectra of LaVO₄ and NdVO₄ (figure 1) show two regions with several well resolved lines; first, the high-energy region between 745 and 880 cm⁻¹ and, secondly, the vibrations below 475 cm⁻¹ (table 1). The high-frequency region corresponds to the 'internal' vibrations of the ideally tetrahedral VO₄ group. However, owing to the relatively high number of lines it is evident that the VO₄ groups are distorted, thus lifting the original selection rules and, at the same time, inducing the splitting of the degenerate vibrational levels for the T_d symmetry. The results are in agreement with previous structural data [48].

The second group of lines in the Raman spectra originates mainly from the RE-oxygen vibrations. For the LaVO₄ matrix the great number of the peaks is in accordance with the relatively high coordination number of the lanthanum (9) and the low symmetry of the RE site (C_1) which both contribute to the complicated vibrational spectra. A comparison of our results with the corresponding IR data [46, 47] gives good agreement (table 1). Despite the evident general similarity of the Raman spectra of the two vanadates, LaVO₄ and NdVO₄, the fine structures are substantially different, in accordance with the structural data. In particular in LaVO₄ the number of peaks is higher, well in line with its structure of lower symmetry.

3.2. Absorption spectra of Nd^{3+} ion in $NdVO_4$, $LaVO_4$ and $NdPO_4$

The absorption spectra of the Nd^{3+} ion in the $NdVO_4$, $LaVO_4$ and $NdPO_4$ matrices were measured in the wavelength region between 900 and 325 nm (11 000 and 30 500 cm⁻¹).

			$\nu ({\rm cm}^{-1})$				
LaVO ₄ :Eu ³⁺	LaVO ₄ :Nd ³⁺		LaVO₄		NdVO₄		
IR	IR	Raman	Raman [46]	IR	Raman	Raman [47]	
860	870	880			868		
846	853	860	860 v _i	860		862 ν_1	
830	838	841	844 v ₃				
814	823	819	820 v 3	815			
800					805		
778	778	793	796 v 3			799 v 3	
768		788	791 v 3		790	$786 \nu_3$	
745	755	767	$771 \nu_3$	755		·	
475	483		-	451	471	468 v4	
435	440	439	440				
		423	425				
389	398	398	399		380		
360	369	375	376		375	377 v 2	
		352	351			-	
		330	324				
300	300	307	309				
285				290			
278		252			262		
245		236			235		
230							
211							
207		207					
		188					
		158			151		
		144					
		138					
		125			122		
		112			112		
		103			112		
		88					
		69					
		63					
		38			37		
		20					

Table 1. Infrared and Raman spectra of LaVO4 and NdVO4.

At higher energies the strong matrix absorption, i.e. absorption of VO_4^{3-} and PO_4^{3-} groups, overlapped with the 4f-4f transitions of the Nd³⁺ ion, thus preventing the determination of high-energy part of the spectra. In each host matrix the Nd³⁺ ion seems to occupy a single site in accordance with the structure. This fact is confirmed by the absorption at liquid-helium temperature from the lowest crystal-field component of the ${}^{4}I_{9/2}$ ground state to the well isolated ${}^{2}P_{1/2}$ level which is not split under the effect of the crystal field. This absorption yields only one line for each matrix. In the LaVO₄ matrix the upper limit of the Nd³⁺ concentration is about 10 mol%, above which concentration one could also observe the absorption lines originating from the tetragonal NdVO₄ form.

The pure electronic zero-phonon lines in the absorption spectra of the Nd³⁺ ion in the NdVO₄, LaVO₄ or NdPO₄ matrices are accompanied by vibronic replica. However,

Figure 2. Part of the absorption spectra of the Nd^{3+} ion in NdPO₄, LaVO₄ and NdVO₄ at liquidhelium temperature.

not all transitions are poisoned by the vibronic side bands; the transitions following the selection $\Delta J \leq 2$ are most badly affected. The intensity of transitions obeying this selection rule show frequently extensive dependence of the environment of the RE³⁺ ion and are thus called 'hypersensitive' transitions. The hypersensitivity has been subject to extensive discussion in literature and the connection between the presence of vibronic transitions and hypersensitivity has been discussed in detail elsewhere also for the REVO₄ system [50, 51]. In our case the presence of strong coupling between the electronic and vibronic levels was considered a nuisance. The part of the absorption spectra of the Nd³⁺ ion in the three matrices shown in figure 2 reveals the basic similarity between the NdPO₄ and LaVO₄:Nd³⁺ spectra, differing substantially from that of NdVO₄.

3.3. Free-ion and crystal-field simulation of the Nd^{3+} energy level schemes

Despite the extensive vibronic structure of the electronic spectra of the Nd^{3+} ion in all matrices studied, the $4f^3$ energy level schemes could be successfully determined (table 2). Up to 90 levels of the 182 allowed Stark levels for the $4f^3$ -electron configuration could be detected. The results of the simulation of the free-ion and crystal-field effects in this

Figure 3. The crystal-field parameter values for NdVO, and YVO₄: RE^{3+} (RE = Nd, Eu, Er and Tm; i.e. 4f³, 4f⁶, 4f¹¹ and 4f¹² configurations) series.

basis set are given in table 3. At once it can be observed that the simulation could reproduce the experimental energy level scheme in a completely satisfactory way; the RMS deviations have assumed low values (table 3) and no large individual discrepancies occur between the calculated and experimental energy values (table 2). During the simulation it was found that some of the free-ion parameters could not be varied freely owing to the lack of the most determining energy level values. Accordingly, the values of a few parameters were fixed to their customary values.

The free-ion parameter values in table 3 show no considerable variation as a function of the crystal structure of the host or the host cation. However, it is rather surprising to observe an increase in the values of the Racah parameters E^i with increasing size of the host cation, i.e. Nd³⁺ versus La³⁺ in the REVO₄ series. Since the E^i -parameters describe the electrostatic interaction between the 4f electrons, their values should be expected to increase with decreasing space for the electrons to reside. A slight trend of this kind can be observed between LaVO₄ and NdPO₄ but probably the different structure of NdVO₄ from LaVO₄ hides this trend in the REVO₄ series.

In contrast with the similarity of the free-ion parameters irrespective of the crystal structure of the host the crystal-field parameter values for NdVO₄ and LaVO₄ are completely different. The effect of the different structures can be seen not only in the different number of the crystal-field parameters but also in their dissimilar values. On the other hand, the structural similarity between LaVO₄ and NdPO₄ results also in rather similar crystal-field parameter values. A comparison with the crystal-field parameter values for other closely related systems, i.e. $YVO_4:RE^{3+}$ [29, 37, 40, 45] shows the previous results consistent with our values for NdVO₄ as revealed by figure 3. In fact, despite the different matrix the evolution of the B_q^k -parameter values is rather smooth through the whole RE series. The crystal-field effect should in theory increase towards the end of the RE series owing to the increased nuclear charge. However, even the reverse trend can be observed in the $YVO_4:RE^{3+}$ series. This may be due to the fact that, when the smaller Er^{3+} and Tm^{3+} (4f¹¹ and 4f¹² configurations, respectively) replace the Y^{3+} matrix cation, the space available in fact expands instead of shrinking. The

E Antic-Fidancev et al

	Energy level (cm ⁻¹)						
	NdVO4		LaV	LaVO4:Nd3+		NdPO ₄	
	Calculated	Experimental	Calculated	Experimental	Calculated	Experimental	
⁴ I _{9/2}	-11	0	3	0	22	0	
	124	106	94	67	71	64	
	189	166	198	202	182	210	
	239	244	358	323	318	314	
	376	375	431	436	446	456	
4 I	1947	1961	1988	1979	1991		
-11/2	1972	1986	2013	2012	2026		
	2022	2014	2032	2043	2065		
	2041		2109	2140	2082		
	2111	2114	2151	2168	2145		
	2134	2143	2209	2222	2203		
48	3800		301 8		3045		
■ 13/2	3904		3056		3078		
	3061		3000		4010		
	4017		4034		4019		
	4017		4104		4112		
	4117		4173		4112		
	4112		4209		4133		
	4112		7209		42.30		
"L _{15/2}	5846		5819		5892		
	5857		5915		5912		
	5919		5987		5960		
	6054		6031		6047		
	6133		6127		6170		
	6198		6252		6315		
	6199		6392		6334		
	0238		0445		620A		
4 F 3/2	11 380	11 382	11 404	11 404	11466	11 477	
_	11 393	11 401	11 539	11 545	11 574	11 597	
$^{2}\text{H2}_{9/2}$ &	12 370	12 390	12419	12 430	12 490	12 502	
⁴ F ₅/2	12 403	12 408	12 532	12 525	12 545	12 556	
	12 456	12 486	12 556	12 595	12 598	12 605	
	12 535	12 519	12.605	12 595	12 635	12 639	
	12 557		12 630	12 667	12 692	12 682	
	12 574	12 599	12739	12 752	12731	12 725	
	12 656		12 825	12 788	12 830	12 790	
	12 678	12 680	12 867		12881	12 840	
'F _{7/2}	13 360	13 336	13 365	13 347	13 452	13 416	
⁴ S _{3/2}	13 376		13 470	13 481	13 481	13 527	
	13 414	13 409	13 532	13 515	13 545	13 576	
	13 443	13 442	13 575	13 579	13 556	13 576	
	13 449	13 442	13 589	13 579	13 614	13 635	
	13 475	13 465	13 637	13 635	13 674	13 686	
⁴ F _{9/2}	14 599	14 592	14 687	14 670	14 752	14 724	
-,-	14 608	14 606	14 695	14 7 1 6	14 764	14 774	
	14 662	14 661	14 757	14 776	14 797	14 812	
	14 730	14 721	14 832	14 835	14 902	14 868	
	14 750	14 735	14 916	14 905	14 930	14 930	

Table 2. Experimental and calculated energy levels of the Nd^{3+} ion in $NdVO_4$, $LaVO_4$ and $NdPO_4$.

Table 2 continued

	Energy level (cm ⁻¹)					
	NdVO ₄		LaVO ₄ :Nd ³⁺		NdPO₄	
	Calculated	Experimental	Calculated	Experimental	Calculated	Experimental
² H2 _{11/2}	15 811	15 787	15 947	15 924	15 975	15 960
	15 820	15 820	15 952	15 924	15 981	15 960
	15 836		15 976	15 961	16 005	15 993
	15 844		15 992	15 989	16 021	16 025
	15 847	15 866	160 1 2	16 020	16 039	16 049
	15 863	15 966	16 040	16 052	16 053	16 085
4G _{5/2} &	16 863	16 851	17 038	17 000	17 135	17 099
² G1 _{7/2}	16 984	16 996	17 096	17 152	17 211	17 232
•/*	17 049		17 212	17 221	17 324	17 310
	17 171	17 167	17 294	17 290	17 383	17 397
	17 184	.,	17 332	17 320	17 407	17 410
	17 239	17 223	17 380	17 368	17 447	17 415
	17 257	17 267	17 422	17 415	17 487	17 494
4G~	18776		18 908	18 047	10.015	10.045
U 1/2	18 832	18 810	18 092	10 247	19 015	19 043
	18 875	10 019	10 762	10 9/9	19 070	19 002
	18 048	18 025	10 11 2	19 045	19 157	19 130
2K 9.	10 151	10 935	19 112	19 145	19 200	19 223
13/2 CC	19 151		19 343	19 331	19 448	19 400
"G _{9/2}	19 173		19 393	19 403	19 487	19 513
	19 328	19 302	19 452		19 537	19 553
	19 330	19 336	19 483		19 582	19 587
	19 348		19 507	19 498	19 597	
	19 379	19 369	19 536		19 622	19 614
	19 383		19 563		19 637	19 645
	19 405	19 405	19 588		19 692	19 710
	19 453	19 443	19 626	19 618	19 741	
	19 475		19 653	19 700	19 745	19 766
	19 536		19 815	19 800	19 863	19 854
	19 536		20 032	20 012	20 016	20 043
${}^{2}G1_{9/2}$	20 <i>7</i> 77		20 898	20 942	20 991	21 025
	20 789	20 814	21 007	20 996	21 064	21 063
	20 870	20 859	21 034	21 018	21 105	21 084
	20 891	20 885	21 046	21 039	21 124	21 114
	20 923	20 959	21 100	21 076	21 138	21 154
² D1 ₂₇	21 022	21 012	21 128	21 139	21 217	21 212
512	21 053	21 065	21 209	21 209	21 293	21 278
² K _{15/2} &	21 171	21 128	21 334	21 323	21 438	21 434
4G	21 184	21 156	21 386	21 363	21,500	21 489
- 11/2	21 224	21 241	21 450	21 445	21 550	21 550
	21 241	21 272	21 490	-2 002	21 571	21 570
	21 335	21 351	21 496	21 498	21 636	21 613
	21 370	21 378	21 517	JA 190	21 645	21 629
	21 410	21 409	21.539		21 683	21 666
	21 420		21 567	21 566	21 000	21 603
	21 722	21 /61	21 507	21 500	21 072	21 073
	21 737	21 401	21 042	21 027	41 123 01 710	21 / 19
	21 474 01 AQA	21 499	21 000 21 701	21 000	41 /40 01 700	21 743
	21 404	21 400	21 701	41 090 91 744	21 /00	21 /00
	61 JV/		41/41	61 /44	41 042	71017

i	Energy level (cm ⁻¹)						
	NdVO4		LaV	LaVO ₄ :Nd ³⁺		NdPO₄	
	Calculated	Experimental	Calculated	Experimental	Calculated	Experimental	
	21 550 21 591	21 587	21 820 22 044	21 861 22 012	21 880 22 046	21 904 22 023	
² P _{1/2}	23 074	23 080	23 227	23 229	23 328	23 329	
² D1 _{5/2}	23 631 23 675 23 680	23 639 23 674 23 674	23 685 23 880 23 974		23 776 23 932 24 004	23 765 23 924 24 020	
² P _{3/2}	25 987 26 011	25 989 26 005	26 062 26 221		26 170 26 306	26 182 26 318	
4D _{3/2}	27 666 27 747	27 671 27 736	27 764 27 880		28 034 28 127	28 046 28 128	
'D _{5/2}	27 839 27 872 28 061	27 887	27 999 28 182 28 269		28 243 28 317 28 499	28 305 28 514	
⁴ D _{1/2}	28 291	28 285	28 568		28 753	28 743	
² I _{11/2}	28 735 28 745 28 909 28 978 29 066		28 910 29 091 29 200 29 312 29 444		29 130 29 169 29 359 29 468 29 479	29 113 29 383 29 450	
	29 085		29 464		29 539	29 533	
² L _{15/2}	29 631		29 697		30 000	29 986	
⁴ D _{7/2}	29 638 29 679 29 710 29 743 29 823 29 841 29 880		29 859 29 881 29 891 29 961 30 064 30 089 30 188		30 006 30 110 30 137 20 179 30 198 30 293 30 384		

Table 2 continued

relatively high B_q^k -values for YVO₄:Nd³⁺ can be explained in a similar way; the Nd³⁺ ion is experiencing a stronger crystal-field effect in replacing a much smaller Y³⁺ matrix cation, reversing the theoretical behaviour. Our values for NdVO₄:Nd³⁺ are usually somewhat smaller than those for YVO₄:Nd³⁺, well in line with the previous reasoning.

3.4. Luminescence spectra of Eu^{3+} in $LaVO_4$ and $LaPO_4$

The emission of the Eu³⁺ ion in both lanthanum matrices originates mainly from the lowest level ${}^{5}D_{0}$ of the ${}^{5}D$ manifold to the different crystal-field levels of the ground multiplet ${}^{7}F_{0-4}$. An order-of-magnitude weaker emission could be observed from the higher ${}^{5}D$ levels, ${}^{5}D_{1}$ and ${}^{5}D_{2}$, however. The emission from the excited ${}^{5}D_{1-4}$ levels of the Eu³⁺ ion is rather efficiently quenched by multiphonon relaxation of the excitation energy. In the LaVO₄ and LaPO₄ matrices the lattice phonons of highest energy are

_		Value (cm ⁻¹)	
Parameter	NdVO ₄	LaVO₄	NdPO₄
<i>E</i> ⁰	12 038 (1)	12 144 (1)	12 150 (1)
E^1	4740 (1)	4810(1)	4804 (1)
E^2	23.15(2)	23.34(2)	23.45(1)
E^3	475.8(1)	483.5(1)	484.6(1)
ζ	869.5 (6)	871.1 (7)	875.2 (6)
α	17.28 (5)	20.39 (5)	20.48 (5)
β	-568(1)	-646(1)	-573 (1)
Y	[1500]	[1500]	[1500]
T^2	[330]	241 (5)	[300]
T^3	29.6 (2.4)	36.1 (2.7)	24.0 (2.1)
T^4	111 (3)	99.3 (3.3)	95.0 (2.7)
T ⁶	-249 (5)	-238 (8)	-274 (6)
T^7	332 (6)	288 (12)	338 (6)
T^8	[330]	197 (13)	329 (11)
B_{0}^{2}	-70 (4)	-830 (3)	-655 (14)
B_{2}^{2}		213 (4)	104 (15)
\mathcal{B}_0^4	280 (9)	-769 (7)	-700 (38)
B_2^4	.,	562 (5)	221 (38)
$B_4^{\overline{4}}$	1138 (3)	383 (6)	693 (25)
B_0^6	-1017 (7)	- 798 (9)	-1047 (46)
B_2^6	• •	-702 (6)	811 (34)
$B_4^{\overline{6}}$	88 (7)	-105 (9)	- 189 (56)
B_{6}^{6}	.,	-563 (7)	-63 (47)
Number of lev	vels 71	74	90
RMS deviation	15	20	17

Table 3. Free-ion and crystal-field parameters for the Nd^{3+} ion in $NdVO_4$, $LaVO_4$ and $NdPO_4$. The values in parentheses refer to the estimated standard deviation of the parameter values. The parameter values in square brackets were not varied during the optimization process.

nearly 900 cm⁻¹ which means that at least three phonons are needed to fill the energy gap of 2000 cm⁻¹ between the ${}^{5}D_{1}$ and ${}^{5}D_{0}$ (as well as between the ${}^{5}D_{2}$ and ${}^{5}D_{1}$) levels. Such a process involving a simultaneous absorption of three phonons is not highly improbable and thus explains the weak emission from the ${}^{5}D_{1-2}$ levels.

As was the case with the absorption spectra of the Nd^{3+} ion also the luminescence spectra of Eu^{3+} contained vibronic side bands (figure 4). However, the ${}^7F_{0-4}$ energy level scheme could be derived from the emission spectra as nearly complete, i.e. for LaVO₄ 24 levels and for LaPO₄ 23 out of 25 (table 4). The energy level schemes are very similar and, accordingly the results of the crystal-field simulation were also close (table 5). The simulation, as for the Nd^{3+} ion, also reproduces the experimental energy level schemes well (figure 5). However, it should be pointed out that owing to the large number of crystal-field parameters, there might exist other sets of B_q^k -parameters yielding results of the same quality. On the other hand, the similarity of the Eu^{3+} and Nd^{3+} parameter sets (tables 3 and 5) supports the unique nature of the simulation.

Figure 4. The luminescence spectra of the Eu^{3+} ion in $LaVO_4$ and $LaPO_4$ at liquid-nitrogen temperature.

Figure 5. Comparison between the calculated and experimental crystal-field splittings of the $^{7}F_{0-4}$ energy levels of the Eu³⁺ ion in LaVO₄.

		Energy level (cm ⁻¹)					
		LaV	O4	LaP	04		
		Experimental	Calculated	Experimental	Calculated		
7F0	A ₁	0	0	0	0		
${}^{7}\mathbf{F}_{1}$	A_2	240	240	261	262		
-	\mathbf{B}_2	423	428	406	411		
	B ₁	486	481	464	458		
7F-	B-	948	952	943	954		
- 2	A,	1000	999		978		
	B 1	1018	1010	1021	1019		
	A,	1116	1117	1096	1091		
	A ₂	1188	1192	1178	1177		
7 F 2	Α.	1796	1813	1853	1851		
- 3	B-	1857	1855	1881	1859		
	B,	1879	1872	1894	1895		
	B ₁	1911	1918	1917	1929		
	$\dot{A_2}$	1953	1948	1927	1936		
	\mathbf{B}_2	1989	1981	1944	1952		
	\mathbf{A}_{1}		1995	1967	1962		
$^{7}F_{4}$	A_2	2674	2682	2677	2675		
	B,	2699	2697	2755	2751		
	A ₁	2734	2736	2792	2793		
	A ₂	2866	2865	2841	2852		
	\mathbf{A}_1	2958	2960	2863	2868		
	\mathbf{B}_2	2986	2982	2905	2906		
	\mathbf{B}_{1}	3004	3002	2933	2935		
	Α,	3016	3015	2963	2955		
	B_2	3134	3137		3006		
⁵ D ₀	Α,	17 271			17 281		
⁵ D1		19 009					
•		19 042					
		19 058					
⁵ D ₂		21 442					
-		21 479					
		21 506					
		21 513					
		21 547					

Table 4. Experimental and	l calculated energy	levels of the Eu ³⁺	⁺ ion in LaVO₄ and LaPO₄
---------------------------	---------------------	--------------------------------	-------------------------------------

In contrast with the Nd^{3+} case, there exist ample data for the crystal-field effect of the Eu^{3+} ion in other $REVO_4$ matrices. However, once again it must be concluded that the crystal-field parameter sets for the monazite structure are completely different.

4. Conclusions

The energy level simulations for the Nd^{3+} and Eu^{3+} ions in the REVO₄ and REPO₄ matrices gave satisfactory results. The B_q^k -parameter sets are very similar for the matrices

6842 E Antic-Fidancev et al

	Value (cm ⁻¹)		
	LaVO ₄ :Eu ³⁺	LaPO ₄ :Eu ³⁺	
B ² ₀	-843 (11)	-649 (23)	
B_{2}^{2}	172 (5)	129 (13)	
B_0^4	-928 (15)	-558 (40)	
B_2^4	438 (12)	562 (27)	
B_4^4	409 (11)	496 (30)	
B [*] ₀	-713 (22)	-512 (61)	
<i>B</i> [§]	-677 (15)	-148 (26)	
$B_{A}^{\tilde{6}}$	-568 (12)	-276 (41)	
B ₆	-623 (11)	-318 (33)	
RMS deviation	5.4	9	

Table 5. Crystal-field parameters for LaVO₄: Eu^{3+} and LaPO₄: Eu^{3+} . The values in parentheses refer to the estimated standard deviation of the parameter values.

of the same xenotime structure but differ completely from that of the monazite structure. As far as the results for the NdVO₄ host are concerned, they are consistent with those published earlier for YVO_4 :Nd³⁺ and YVO_4 :RE³⁺.

References

- [1] Carnall W T, Goodman G L, Rajnak K and Rana R S 1989 J. Chem. Phys. 90 3443
- [2] Morrison C A and Leavitt R P 1979 J. Chem. Phys. 71 2366
- [3] Caro P, Derouet J, Beaury L, Teste de Sagey G, Chaminade J P, Aride J and Pouchard M 1981 J. Chem. Phys. 74 2698
- [4] Jayasankar C K, Richardson F S and Reid M F 1989 J. Less-Common Met. 148 289
- [5] Crosswhite H M 1977 CNRS Coll. 225 p 65
- [6] Rajnak K and Couture L 1981 Chem. Phys. 55 331
- [7] Nutter P, Weber M and Harrison M 1965 Raytheon Report AFML-TR-65-57
- [8] Jezowska-Trzebiatowska B, Ryba-Romanowski W, Mazurak Z and Hanuza J 1980 Chem. Phys. 50 209
- [9] Schwartz R W, Faulkner T R and Richardson F S 1979 Mol. Phys. 38 1767
- [10] Foster D R, Richardson F S and Schwartz R W 1985 J. Chem. Phys. 82 601
- [11] da Gama A A S, de Sa G F, Porcher P and Caro P 1981 J. Chem. Phys. 75 2583
- [12] Görller-Walrand C, Fluyt L, Porcher P, da Gama A A S, de Sa G F, Carnall W T and Goodman G L 1989 J. Less-Common Met. 148 339
- [13] Morrison CA, Wortman DF, Leavitt R P and Jenssen H 1980 Report HDL-TR-1897
- [14] Barthem R B, Buisson R and Cone R L 1989 J. Chem. Phys. 91 627
- [15] Caro P, Derouet J, Beaury L and Soulie E 1979 J. Chem. Phys. 70 2542
- [16] Chang N C, Gruber J B, Leavitt R P and Morrison C A 1982 J. Chem. Phys. 76 3877
- [17] Beaury L 1988 PhD Thesis Universite de Paris-Sud
- [18] Antic-Fidancev E, Lemaitre-Blaise M, Beaury T, Teste de Sagey G and Caro P 1980 J. Chem. Phys. 73 4613
- [19] Karayianis N, Morrison C A and Wortman D F 1976 Solid State Commun. 18 1299
- [20] Morrison CA, Karayianis N and Wortman DF 1977 Report HDL-TR-1788 (Harry Diamond Laboratory)
- [21] Beaury L and Caro P 1990 J. Physique 51 471
- [22] Gruber J B, Leavitt R P and Morrison C A 1983 J. Chem. Phys. 79 1664
- [23] Taibi M, Aride J, Antic-Fidancev E, Lemaitre-Blaise M and Porcher P 1989 Phys. Status Solidi a 115 523
- [24] Gruber J B, Hills M E, Morrison C A, Turner G A and Kokta M R 1988 Phys. Rev. B 37 8564
- [25] Antic-Fidancev E, Jayasankar C K, Lemaitre-Blaise M and Porcher P 1986 J. Phys. C: Solid State Phys. 19 6451

- [26] Nekvasil V 1978 Phys. Status Solidi b 87 317
- [27] Karayianis N, Morrison CA and Wortman DF 1976 Report HDL-TR-1776 (Harry Diamond Laboratory)
- [28] Hayhurst T, Shalimoff G, Conway J G, Edelstein N, Boatner L A and Abraham M M 1982 J. Chem. Phys. 76 3960
- [29] Karayianis N, Morrison C A and Wortman D F 1975 J. Chem. Phys. 62 4125
- [30] Guo M-D, Aldred A T and Chan S-K 1987 J. Phys. Chem. Solids 48 229
- [31] Gruber J B and Satten R A 1963 J. Chem. Phys. 39 1455
- [32] Kato Y, Nagai T and Saika A 1977 Bull. Chem. Soc. Japan 50 862
- [33] May P S, Jayasankar C K and Richardson F S 1989 Chem. Phys. 138 123
- [34] Wortman D F, Morrison C A and Karayianis N 1977 Report HDL-TR-1794 (Harry Diamond Laboratory)
- [35] Singh B P, Sharma K K and Minhas I S 1986 J. Phys. C: Solid State Phys. 19 6655
- [36] Minhas I S, Sharma K K and Gruber J B 1973 Phys. Rev. B 8 385
- [37] Brecher C, Samelson H, Lempicki A, Riley R and Peters T 1967 Phys. Rev. 155 178
- [38] Brecher C, Samelson H, Riley R and Lempicki A 1968 J. Chem. Phys. 49 3303
- [39] Grenet G, Kibler M, Linares C, Louat A and Gaume F 1977 Chem. Phys. Lett. 51 160
- [40] Linares C, Louat A and Blanchard M 1977 Struct. Bonding (Berlin) 33 179
- [41] Gaume F, Linares C, Louat A and Blanchard M 1974 Proc. 11th Rare Earth Research Conf. vol 1 (Oak Ridge: US Atomic Energy Commission) p 382
- [42] Kuse D 1967 Z. Phys. 203 49
- [43] Vishwamittar and Puri S P 1974 Phys. Rev. B 9 4673
- [44] Knoll K D 1971 Phys. Status Solidi b 45 553
- [45] Wortman D F, Morrison C A and Leavitt R P 1974 J. Phys. Chem. Solids 35 591
- [46] Baran E J and Aymonino P J 1971 Z. Anorg. (Allg.) Chem. 383 220
- [47] Baran E J, Escobar M E, Fournier L L and Filgueira R R 1981 Z. Anorg. (Allg.) Chem. 472 193
- [48] Mullica D F, Sappenfield E L and Boatner L A 1990 Inorg. Chim. Acta 174 155
- [49] Beall G W, Boatner L A, Mullica D F and Milligan W O 1981 J. Inorg. Nucl. Chem. 43 101
- [50] Antic-Fidancev E, Lemaitre-Blaise M and Caro P 1984 C. R. Acad. Sci. Paris II 290 575
- [51] Antic-Fidancev E, Lemaitre-Blaise M, Caro P, Piriou B and Strek W 1985 Rare Earths Spectroscopy (Singapore: World Scientific) p 354